Overcoming instabilities in Verlet-I1/r-RESPA
with the mollified impulse method

Jestis A. Izaguirre!, Qun Ma', Thierry Matthey?, Jeremiah Willcock?,
Thomas Slabach!, Branden Moore!, and George Viamontes'

! Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, Indiana 46556-0309, USA
2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Abstract. The primary objective of this paper is to explain the derivation of
symplectic mollified Verlet-I/r-RESPA (MOLLY) methods that overcome linear and
nonlinear instabilities that arise as numerical artifacts in Verlet-I/r-RESPA. These
methods allow for lengthening of the longest time step used in molecular dynamics
(MD). We provide evidence that MOLLY methods can take a longest time step
that is 50% greater than that of Verlet-I/r-RESPA, for a given drift, including no
drift. A 350% increase in the timestep is possible using MOLLY with mild Langevin
damping while still computing dynamic properties accurately. Furthermore, longer
time steps also enhance the scalability of multiple time stepping integrators that
use the popular Particle Mesh Ewald method for computing full electrostatics, since
the parallel bottleneck of the fast Fourier transform associated with PME is invoked
less often. An additional objective of this paper is to give sufficient implementation
details for these mollified integrators, so that interested users may implement them
into their MD codes, or use the program PROTOMOL in which we have implemented
these methods.

Using simple analysis of a 1-d model problem we show the linear instability
present in Verlet-1/r-RESPA at approximately half the period of the fastest motion,
and more interestingly, how the mollified methods can be designed to overcome
them. The paper also includes an experimental component that shows how these
methods overcome instability barriers in practice.

We also present evidence that more complicated instabilities are present in
Verlet-1/r-RESPA than linear analysis reveals. In particular, we postulate nonlin-
ear resonance mechanisms hereto ignored, although these mechanisms are known for
leapfrog. This means that Verlet-1/r-RESPA is no better than leapfrog if one wants
a simulation with no drift. Currently, we use mild Langevin damping to overcome
these nonlinear instabilities, but it is possible to design symplectic MOLLY inte-
grators that are nonlinearly stable as well.

1 Introduction

The primary objective of this paper is to explain the derivation of symplec-
tic mollified Verlet-I/r-RESPA methods (MOLLY) that overcome linear and
nonlinear instabilities that arise as numerical artifacts in Verlet-I/r-RESPA.
These methods allow for lengthening of the longest time step used in molec-
ular dynamics (MD). We provide evidence that MOLLY methods can take a

longest time step that is 50% greater than that of Verlet-1/r-RESPA, for a
given drift, including no drift. Results presented elsewhere show that a 350%
increase in the timestep is possible using MOLLY with mild Langevin damp-
ing while still computing dynamic properties accurately [29]. Furthermore,
longer time steps also enhance the scalability of multiple time stepping (MTS)
integrators that use the popular Particle Mesh Ewald (PME) [14] method for
computing full electrostatics, since the parallel bottleneck of the fast Fourier
transform (FFT) associated with PME is invoked less often. An additional
objective of this paper is to give sufficient implementation details for these
mollified integrators, so that interested users may implement them into their
MD codes, or use the codes that we have made available. Both mathematical
and software aspects are covered.

This paper presents simple analysis of a 1-d model problem, following
Schlick and co-workers [4,44], to show the linear instability present in Verlet-
I/r-RESPA at approximately half the period of the fastest motion, and more
interestingly, how the mollified methods can be designed to overcome them.
The paper also includes an experimental component that shows how these
methods overcome instability barriers in practice. In the interest of presenting
reproducible results, extensive details of the experimental protocol are pro-
vided. This includes algorithmic and implementation details of the methods,
as well as details of the test systems.

We also present evidence that more complicated instabilities are present
in the Verlet-I/r-RESPA family of methods than linear analysis reveals. In
particular, we postulate nonlinear resonance mechanisms hereto ignored, al-
though these mechanisms are known for leapfrog [47]. Nonlinear stability
analysis confirming these results is presented elsewhere [38]. Currently, we
use mild Langevin damping to overcome these nonlinear instabilities, but
it is possible to design symplectic MOLLY integrators that are nonlinearly
stable as well.

2 Background

Molecular dynamics (MD) solves Newton’s equations of motion by evaluat-
ing pairwise interactions between particles (force evaluation), marching the
system in time (numerical integration), and imposing boundary conditions.
Some tutorials on multiple time stepping integration are in [27,43,46,47,51].
We consider the requirements of MD software that incorporates state-of-the-
art MTS integrators of an arbitrary number of levels. Examples of these in-
tegrators are the extrapolative method LN [1,2,44] and the mollified impulse
method, or MOLLY [17,18,28,29,31,53], which is in turn a more stable vari-
ant of Verlet-I/r-RESPA [20,56]. We present linear analysis of a simple model
problem discretized using Verlet-I/r-RESPA and different MOLLY methods
to show how MOLLY can overcome the instability barrier due to linear reso-
nance. We then show evidence of nonlinear instabilities in Verlet-I/r-RESPA.

Fig. 1. Schematic for the Impulse multiple time stepping method.

Finally, we present experimental evaluation of the MOLLY methods. We
introduce a particular algorithm-development platform for MD called PrO-
TOMOL [32,30,41]. We describe how the MOLLY methods are implemented
seamlessly there, and provide full derivations of MOLLY in the appendix.
The experiments confirm the results of the linear and nonlinear analysis.

2.1 Multiple Time Stepping

Here we present a review of multiple time stepping for molecular dynamics.
For more details, we recommend the comprehensive tutorials [7,35] and the
books [15,22,36,45].

The numerical integration of Newton’s equations of motion is limited by
stability: the length of time steps one can take to integrate the equations
of motion is fairly short relative to the total length needed for simulations
— time steps are in the order of femtoseconds (10715 seconds) whereas sim-
ulations of a few microseconds (107% seconds) up to one second are most
desired.

Multiple time stepping integrators have been used to lengthen the time
step for most of the interactions in the equations of motion. These methods
evaluate different parts of the force at different frequencies. Limitations on
the step size in MTS integrators are still severe, and these are mostly due to
stability rather than accuracy.

A typical MTS integrator is the Verlet-I/r-RESPA multiple time step-
ping impulse method. In this method the force is split into different com-
ponents whose dynamics correspond to different time scales, which are then
represented as appropriately weighted impulses (with weights determined by
consistency). The impulse method is

d2 . fas . slow
EX=- D t(t-n'AYVURH(X)— Y AL §(t—nAt) VU (X)
(1)

where the partitioning of U into U™* and U®'°Y is chosen so that an ap-
propriate time step At for the slow part of the force is larger than a time
step ot for the fast part. In the formula, § is the Dirac delta function. This
is illustrated schematically in Figure 1. Verlet-I/r-RESPA can be written as
Algorithm 1. MTS integrators may use more than two levels. An elegant way

n/=—oo n=-—oo

to consider the generalization of MTS integrators to arbitrary numbers of
levels is the use of the Trotter factorization, cf. [15,56].

For systems with flexible water, where there are bond vibrations and angle
torsions, this method permits an increase from 1 to 3fs in the length of the
longest time step At, with no drift, and to 4 fs with little drift. It is completely
unstable at 5 fs.

half a kick

Pn71+6 — Pn71 + %Fslow,nfl. (2)

a vibration Propagate X"~ !, P"71%¢ by integrating

d d

5X= M™'P, P = Fst(X) (3)
for an interval At to get X", P"~¢.
half a kick
prlowin _ pslow xmy (4)
P =P+ %FSIOW’". (5)

Algorithm 1: Verlet-I/r-RESPA method. The symbols P"~1+€ and P"~¢
represent momenta just after the (n — 1)th kick, and just before the nth kick,
respectively.

When Verlet-1/r-RESPA was introduced, it was predicted that there would
occur resonances that might induce instability if the frequency of the slow
force impulse coincides with a normal mode frequency of the system. Res-
onance produces an oscillation in the positions whose amplitude increases
with time. There is empirical evidence that time steps of approximately half
of the fastest period present on the system or greater are not possible with
this method. Thus, when flexible water molecules are present in the system,
for example as solvent, the linear stability limit is around 5 fs.

2.2 The Mollified Impulse Method

We have worked on the mollified impulse method (MOLLY), a family of
integrators [17] that counteracts the instabilities present in the MTS Verlet-
I/r-RESPA integrator. This is accomplished by perturbing the potential using
time averaged positions. The time average is obtained by doing dynamics over
vibrations using forces that produce those vibrations. Thus,

U™ (X) — USY(A(X)), (6)

with the force defined as a gradient of this averaged potential,
—VUI™(X) — —Ax(X)T VU (X)), (7)

where Ax (X) is a Jacobian matrix. MOLLY can be written as Algorithm 2.

half a mollified kick

) At
P7L71+€ _ Pnfl 4 TtFSIOW’n71~ (8)
a fluctuation Propagate X"~ !, P"~ "¢ by integrating
%X =M'P, %P = F™(X) 9)

(e.g., Verlet/leapfrog with time step ¢) for an interval At to get X™ and P™~°.
a time averaging Calculate a temporary vector of time-averaged positions X" =
A(X™) and a Jacobian matrix J" = A, (X™)T . The time averaging function
A(z) uses only the fastest forces Fr°duced(z).
half a mollified kick

Pn _ Pn—e + %Fslow,n (10)

Algorithm 2: Mollified impulse method. The symbols P*~!*€ and P"~¢
represent momenta just after the (n — 1)th kick, and just before the nth kick,
respectively. Note that X™ is used only for the purpose of evaluating F*°%,
it does not replace the value of X™.

This perturbation compensates for finite At artifacts. Intuitively, aver-
aged positions are better than instantaneous values for a rapidly changing
trajectory X (t). Perturbing the potential rather than the force ensures that
the numerical integrator remains symplectic [45]. The force used by MOLLY
is the gradient of the perturbed potential. The pre-factor Ax(X)T can be
seen as a filter that eliminates components of the slow force impulse in the
directions of the fast forces, and thus improves the stability of Verlet-I/r-
RESPA. Different averaging functions give rise to MOLLY integrators with
different stability and accuracy properties. We have used two different averag-
ing methods, one based on explicit time averaging, which is reported in [53],
and another based on complete elimination of linear instabilities, reported in
[31]. These two methods overcome the half period barrier and achieve a 50%
speedup over Verlet-I/r-RESPA. A stochastic variant of MOLLY has recently
been shown to allow time steps 350% larger [29].

These filters currently do not filter out all possible linear resonances, pri-
marily for efficiency purposes. With better filters, further improvements in
the time step should be possible. However, in practice, even a perfect linear

filter is not good enough. In this paper we show empirically that there is
another instability that is reported here for the first time: there is a nonlin-
ear instability, namely a 3:1 unconditionally unstable resonance, and a 4:1
conditionally stable resonance in Verlet-I/r-RESPA. The nonlinear stability
analysis is reported elsewhere.

BSpline MOLLY It is possible to use time averagings that consist of nu-
merically integrating an auxiliary, reduced problem:

A(z) = i /OOO b (ﬁ) X(t)dt (11)

where ¢ (Ait) is a weight function, and X (t) solves an auziliary problem

d2 ~ fastest / v v d ¢

Mdt2X_F (X), X(0) ==z, th(O) =0. (12)

This approach is computationally feasible if the weight functions ¢ have

compact support in time. The paper [17] suggests using B-spline weight func-

tions, which are non-zero over a short interval. The effectiveness of the averag-

ings induced by these weight functions is directly related to the extensiveness

of the time averaging. One such B-spline weight function that has been tested
is called SHORTAVERAGE:

0, s <0,
2, 0<s<?i,
¢(s) = , (13)
1; s = 2
1
0, s > 5-

A longer averaging that is a scaling of SHORTAVERAGE is called LON-
GAVERAGE:

0, s <0,
1, 0<s<1,
o(s) =19 4 B (14)
5 s=1
0 s > 1.

The coding of A(x) and A,(x) can be done by hand in a systematic
manner. First the calculation of A(z) is coded, and then the differentiation,
applying the chain rule with respect to each of the components of z to yield
code for A,(z). As an example suppose that the leapfrog method with time
step dt is coded for the calculation of A(z). This is then differentiated to
obtain A, (x). The result is the following code for calculating A(z) and A, (x):

Initialization is given by

) x

X
0,
0

)

Ne
[

W o
I

T -

3]
R

I,
0, (15)
0,

and step by step integration by

P =P+ $5tFstest (X)), P, i= P, + LotFistest (X)X,

B:= B+ 36tX¢(t/At), B, := B, + 16tX,¢(t/At),

X :=X+6tM~'P, X, =X, +6tM~'P,, (16)
t:=t+ 6t

B:=B+ %&Xqé(t/At), B, := B, + 30tX,¢(t/At),

P:=P+ §5thaSteSt(X)7 P.:=P, + %5tF£aSteSt(X)Xw.
The value (1/At)B is used for A(z) and (1/At)B, for A,(x). We continue
the above integration until we reach a value of ¢ such that ¢(t/At) is zero at
this value and remains zero for larger values of . In practice, one can choose
&t equal to the stepsize of the lowest level integrator. In the above loop, F,, =
—Ufastest (1) must be computed efficiently. We have included the derivation
of the analytical form of the Hessian matrices for the CHARMm force field
used in our implementation of MOLLY, Uf2stest () in the Appendix.

If the fastest forces included are bonded terms, such as bond and angle
interactions, one may easily compute the Hessians F,,. Once individual Hes-
sian matrices for angle energies and bond energies are computed, one has to
somehow assemble them to form a complete Hessian. To illustrate the proce-
dure, consider a water system, which is easy since all the water molecules are
decoupled from each other. Assume the O is numbered as atom j, and the
H as ¢ and k, and only bond and angle energies are included in the reduced
system. Suppose the we have computed the Hessian matrices of bond energy
for atoms ¢ and j, and j and k, i.e., H}’jd and H;),f, and of angle energy for
atoms ¢, j and k, i.e., HEy. The entries of the assembled Hessian matrix for
this whole molecule should be as follows:

H™ @ 0][0] = H, [0][0] + H;)jd [0][0],

HR[][1] = H [0][1] + H};d[O][Hv

H"0][2] = HE, [0][2],

H1)[0] = HE,[1][0] + HP[1][0],

H©OR[1)[1] = B2, [1][1] + HPA[]1] + HE3[0)[0],
Howl[1)[2] = He 2] + H;?];i[O][l},

Ftotal [2][0] = HEy, [2][0],

H'“™2][1] = HE, [2][0] + H[1][0],

HW2)[2] = H2,[2)[2] + HE][],

For systems other than water, the above simple method does not work be-
cause one or two of the atoms in one angle may also be involved in some other
angles. For other systems, our solution is to assemble the individual Hessian
matrices into a sparse matrix structure representing the total Hessian for the
system, with each entry being a 3 x 3 matrix, i.e., a tensor. Cf. [37].

3 Linear Stability Analysis

Following Schlick and coworkers [4,44], we analyze Verlet-I/r-RESPA and
MOLLY for the simple 1-d model problem

o =p; p=—(\+)z, (17)

that models a particle of unit mass at position x, connected to two springs
with force constants A\; = 22 and Ay = w?, where 22 > w?.

3.1 Discretization using Verlet-I/r-RESPA and MOLLY

The discretization of Equation (17) using Verlet-I/r-RESPA of Algorithm 1,
and MOLLY of Algorithm 2, with a longest time step A, and assuming ana-
lytical integration of the fast spring force associated with {2, can be written
in a generic matrix form as

Tnt1| |1 0 cosf % 1 0 | xp, (18)

Dni1 | —wzéGz 1| | —£2sinb cosd —w2§G2 1 |pnl’
where § = 2A, and G is the Fourier transform of the averaging and mollifica-
tion functions, with the special case G = 1 for Verlet-I/r-RESPA, cf. [17,18,27].
Stability depends on the magnitude eigenvalues of the above propagation
matrix. Because the scheme is symplectic, the determinant is one, and insta-

bility occurs when the eigenvalues become real and reciprocal of each other.
Stability is insured if the value of the trace of this matrix

t(0) = —2w2AG2¥ +2cosf > —2,

or equivalently, the magnitude of the eigenvalues must be 1 for stability.

The main result of the analysis is that Verlet-I/r-RESPA and SHORT-
AVERAGE are unstable around 60 = w, although the former significantly more
so, whereas LONGAVERAGE is stable. This conclusion is validated by the
experiments in this paper.

3.2 Assumptions and simplifications

The limit of interest is 20 < 1, which holds when assuming analytical inte-
gration of the fast forces (§ = 0). We also want wA < 1 to observe the stabil-
ity condition of leapfrog, wA < 2. Thus, we may assume that, for example,
w = £2/4. This is nearly the worst case corresponding to poor separation of
time scales in MD. Other choices are possible. Also, since the matrix BAB
is similar to AB2, we may write the propagation matrix of Equation (18) as:

cos % 1 0
[—Qsin@ COSH] [116(20G2 1} ’ (19)

with eigenvalues

1.)
cosf — 3 (sind) 0G

1
+ 554/ (102400520 — 64 (cos 0sin 0) 0G2 + (sin? 0) 62G* — 1024). (20)

3.3 Verlet-I/r-RESPA

For the impulse method, G = 1, and the magnitude of an eigenvalue of the
propagation matrix is plotted in Figure 2(a). It is clearly seen that it is
unstable for @ = 7. This corresponds to half the fastest period of motion.
This is validated in the experimental section below, and has been shown
before with analytical and empirical evidence [9,53]. It is presented here for
completeness.

3.4 ShortAverage

For SHORTAVERAGE we compute the Fourier transform of Equation (13).

This is given by
0.5
G :/ exp(—ifx)
—0.5 (21)

= %sin.f)e.

Substituting G in Equation (20), we get the plot of Figure 2(b). Note that it
is unstable, but less than Verlet-I/r-RESPA.

3.5 LongAverage

For LONGAVERAGE the Fourier transform of Equation 14 is given by

1
G:

-1

exp(—ifx)

N =

(22)

sin 6.

1
0
Substituting G in Equation (20), we get the plot of Figure 2(c). This is stable
for © ~= m. These results are confirmed in Figure 7 below.

4 Nonlinear Stability

Nonlinear resonances that lead to instabilities are present in the Verlet-
I/r-RESPA method. Unstable resonances usually manifest themselves in the
neighborhood of a certain time step: There is a definite range of time steps

1008

1.006F

10041

1002

0.998

0996

09941

0992

Fig.2. (a) Plot of eigenvalue of propagation matrix for Verlet-I/r-RESPA
discretization for 1-d model problem z’ = p; p’ = —(\1 + A2)z. The function

is cosf — o5 (sinf)6 — 3%\/(1024 cos? — 64 (cos 0sin) 6 + (sin? #) 62 — 1024)
(b) The same for ShortAverage discretization. The function is cosf —

$585in%0.50 — é\/<64 cos? 0 — 16 (cos 0) 22¢ sin” 0.50 + Sig# sin® 0.50 — 64)

1 sin® 6
8 0

(c) The same for LongAverage. The function is cosf —

é\/(*m% cos 0 + S50 _ G4 sin? 0).

-1653.045

(@180 =(30,01)
— (81,59=(32,01)

-1653.055 [~ b

-1653.065

-1653.075

-1653.085

Total Energy (kcal/mol)

-1653.095 - b

-1653.105 - o . R

-1653.115
0

0.5 1 TIml:(fS)
Fig. 3. Results for 300 ps of simulation for a 20 Adiameter sphere of flexible TIP3P
water at about 3.8 K using Verlet-I/r-RESPA. The fluctuation of the total energy is
averaged out by showing only the average value of every 250 data points (spanning
approximately 750 fs). The block-averaged total energy is then shifted to distinguish
better among them. The integration is seen to be unstable at time steps of 3.2fs.
This shows evidence of nonlinear instability at around a third the fastest period.

that causes unbounded energy drift, even if the neighboring time steps are
stable.

KAM theory permits the analysis of nonlinear instabilities near the equi-
librium point of an integrator [51, p. 132-133]. For MTS integrators, the
equilibrium point is close to, but not exactly, the state at zero temperature.
We perform simulations of a flexible TIP3P water system of 20 A of diameter
with fastest period around 10fs at 3.8 K.

The results show that in the neighborhood of At =3 fs, there is an unstable
resonance that manifests itself in a more pronounced drift at that time step
than at neighboring time steps.

Figure 3 shows results near the equilibrium of the method. Signs of in-
stability are evident around 3.2fs, or about a third of the fastest period.
Figure 4 shows results at 300 K that also display a slightly shifted resonance
at 2.9fs. The nonlinear stability analysis of the Verlet-I/r-RESPA method
that explains these results is somewhat involved and beyond the scope of
this paper. It is presented in [38].

5 Experimental Evaluation

To evaluate the performance of the MOLLY, we introduce the testing plat-
form first, with sufficient implementation details for those readers interested
in implementing the methods or reproducing results. Then we describe the
test system and results.

T (Bt o0=(27,0.0)

— (at,51)=(29,0.1)
-800

-802

-804

Total Energy (kcal/mol)

-806

-808 L e L Il
0 05 1 15 2 25 3
Time (fs) J

Fig. 4. Results for 300 ps of simulation for water at about 300 K using Verlet-1/r-
RESPA. The fluctuation of the total energy is averaged out by showing only the
average value of every 250 data points (spanning approximately 750 fs). The block-
averaged total energy is then shifted to let them distinguish from each other. The
integration is seen to be unstable at 2.9fs of cyclelength. This shows evidence of
nonlinear instability.

5.1 Implementation in ProtoMol

PrROTOMOL is a parallel, object-oriented, component-based framework for
MD simulations [32,30,41]. The framework is designed for non-bonded, bonded,
short-range and long-range forces for applications with tens of thousands of
atoms representing biomolecules and solvents. It has a modular design that
allows for easy prototyping of complex methods. For readers interested in
software techniques that are helpful in implementing scientific software, we
recommend to read about the object oriented framework POOMA [23] and
the object oriented library for molecular simulation OOMPAA [24], both of
which offer examples of powerful abstractions for scientific codes. Generic li-
braries such as the STL [48], Blitz++ [58], and MTL [49] are good references
on how to write high performance software in C++ [55]. Excellent references
to scientific computing in C++ are [3,59].

There are excellent MD programs such as AMBER [60], CHARMm [10],
NAMD [34], SPASM [6], X-PLOR [12], PINY_MD [57], and many others
[5,11,13,26,40,50]. Indeed, one has to answer the question, why another MD
program? Our answer is that many design decisions of programs intended for
production simulations render them inappropriate to serve as an algorithm
development and academic research platform. In particular, to implement
MOLLY methods, we identified the following requirements:

1. Support an arbitrary number of levels in MTS integrators. It should be
easy for the user to compose different integrators in an MTS chain.

2. The algorithm developer should be able to easily associate a subset of
forces with each integration level.

3. To accommodate MOLLY integrators, there should be a user defined
pre-processing of coordinates (averaging) and a post-processing of forces
(mollification).

In order to allow for user composition of MTS integrators with good
performance we have implemented a twofold solution: an integrator definition
language that allows the user to compose new MTS integrators at run time,
and an integrator hierarchy that efficiently supports the integrator definition
language. Object composition and inheritance are the main techniques for
code reuse and design [16, p. 18].

Integrator {
level N-1 integrator_name {
cyclelength||timestep value
force forcename forceoptions, [forcename forceoptions]

}

level 0 integrator_name {

}
}

Program 1: Grammar for PROTOMOL’s integrator definition language.

Integrator definition language. At the highest level, our solution is to
provide users with an integrator definition language, where he or she can
select the following: integrator to be used at each level and forces associated
with that level. An integrator can be MTS or single time stepping (STS).
Different STS integrators may be used to define different equations of motion.
Associated with each level is a set of forces to be evaluated at that level,
called a force group in our framework. This provides great flexibility to the
user in partitioning the forces across the multiple levels. An abstract user
definition of a new MTS integrator with N levels is given in Program 1. A
MOLLY method is defined in Program 2. We use this language to describe
the experiments that were performed below.

Integrator hierarchy and inheritance. Now we will discuss how we sup-
port this integrator definition language in PROTOMOL. We assume through-
out this presentation that one uses the velocity or endpoint form of the in-
tegrators. This form can be more easily extended to multiple levels than the

Integrator {
level 1 MOLLY {
cyclelength 6
force Coulomb -algorithm Full -switchingFunction ComplementSWC1}
level 0 Leapfrog {
timestep 1 fs
force Improper, Dihedral, Bond, Angle
force Coulomb -algorithm Cutoff -switchingFunction SWC1
force LennardJones -algorithm Cutoff -switchingFunction SWC2}

Program 2: Two level MOLLY MTS integrator.

position or midpoint form of the integrators, even though the latter is more
stable [4,8,21,51,54,56].

One can abstract the behavior of Verlet, Verlet-I/r-RESPA, and MOLLY
in an algorithmic fashion as follows:

halfkick();
doDriftOrVibration();

calculateForces();

halfkick();

The function doDriftOrVibration() is the key to the abstraction. For an
MTS integrator, it executes the next level of integration, whereas for an
STS integrator, it executes the drift routine. The function calculateForces()
evaluates each force in the force group. MOLLY also defines a pre-processing
of the positions and a post-processing of the forces. The integrator class
hierarchy is designed using inheritance (Fig. 5).

=N

Relationship between integrator definition language and integrator
hierarchy At run time, an integrator definition is interpreted and the cor-
rect integrator hierarchy is set up by PRoTOMOL. This works because the
integration methods are virtual, and are dynamically associated with the spe-
cific type of the integrator object that calls it. A virtual function allows for a
common interface but specialized behavior. The beauty of virtual functions
is that an existing code can be extended without modification. This does not
hurt performance since integration is a relatively infrequent operation; most
of the computing time is spent in force evaluation. An example of a 3-level
chain of integrators set by PROTOMOL at run time is shown in Fig. 6.

5.2 Numerical tests

Numerical experiments were done using flexible water, based upon the TTP3P
model [33], with flexibility incorporated by adding bond stretching and angle

Integrator Standar dI ntegrator
myPositions (d)
myVelocities (d) doDriftOrVibration(); (v)
myEnergies (d) doHalfKick(); (v)
myForces (d) calculateForces(); (i)
myForcesToEvaluate (d) run(..: (i)
myTopology (d) preprocess(); ()
an(.): (V) postprocess(...); (i)

[

ST SIntegrator MTSIntegrator

myTimestep (d) myCycleLength (d)

myNextlntegrator (d)

doDriftOrVibration(); (i)

doDriftOrVibration(); (i)

L eapfrogl ntegrator

Impulsel ntegrator

doHalfKick(); (i)

doHalfKick(); (i)

NoseNV TL eapfrogl ntegrator

BSplineM OL L YIntegrator

myBathPosition (d)
myBathVelocity (d) myMOLLY Position (d)
myTemperature (d) myMOLLY Energy (d)

myThermalInertia (d)

doHalfKick(); (i)

doHalfKick(); (i) preprocess(); (i)
doDriftOrVibration(); (i) postprocess(...); (i)
Key

(d) = dataelement ; (i) = method implementation ; (v) = pure virtual method

Fig. 5. Integrator hierarchy in PROTOMOL.

bending harmonic terms (cf. [36, p. 184]). Experiments such at those in [9]
suggest that flexible water models are particularly sensitive to destabilizing
artifacts in numerical integrators. This is a system that has fastest motions
with periods of around 10fs. For each simulation a trace of the following
information was generated: all of the components of the energy, positions
(trajectories), velocities, and forces.

A small problem was used for the tests, consisting of a 10 A radius sphere
with 423 atoms equilibrated during 100 ps of simulation time by minimization
followed by temperature rescaling to 300 K. By equilibrating we avoid highly
improbable values of different contributions to energies. The potential energy

== > MTSIntegrator
doHalfKick();
doDriftOrVibration();
= *nextlintegrat TS megrgtor
' egrator doHalfKick();
! calculateForces();
! duHal‘fK\ckO;

doDriftOrVibration();

STSIntegrator
*nextintegrator doHalfKick();

calculateForces(); doDriftOrVibration();
doHalfKick(); calculateForces();
doHalfKick();

Fig. 6. Multiple time stepping integrator.

function for an electrostatic interaction is given by

Up'lcctrostatic _ C«QLqJ (23)
1] xl‘] ’
where x;; = ||z; — x;|| is the distance between atoms ¢ and j, ¢; is the charge

for atom i, and C' = 332.0636 kcal mol~! K~!. The energy for a Lennard-Jones
interaction is

12 6
UiLJ{ennard—Jones — 4€ij ((Zj) _ (Zj)) SW(a:ij), (24>
))

where ¢;; and o;; are the Lennard-Jones energy minimum and cross over
point (where the LJ function is zero) and SW is a switching function defined
below. The energy for a bond interaction is

1
Upend = §KB(3«“ij —Ip)?, (25)

where K3 is a bond force constant and [y, is a reference bond length between
atoms i and j for constraint k. Finally, the energy for an angle interaction is

. 1
yenele — §KA(9k —)2, (26)

where K, is an angle force constant, and 6 and 6y are the current value of
the angle and the reference angle for angle constraint k.

For flexible water, Ko = 55 kcal mol~! degrees?, K = 450 kcal mol~! A2,
go = 0.417e, gu = —0.834 ¢, lo_y = 0.957 A, and 6, = 104.52 degrees. The
Lennard-Jones parameters are og_g = 0.4A, 0o_o = 3.1506 A, oo_g =
1.75253 A, e_n = 0.046kcalmol™!, eo_o = 0.1521 kecalmol™!, eo_g =
0.08365 kcalmol~!.

Figure 7 illustrates these three methods at 5 fs The numerical results con-
firm the predictions of the linear stability analysis: the Bspline method called
LONGAVERAGE overcomes the linear instability at half the fastest period
or 5fs better than SHORTAVERAGE. Unsurprisingly, the Verlet-I/TRESPA
method is absolutely unstable there.

-700 = T
. «+++ Impulse

—— BSplineMOLLY using Short

= = BSplineMOLLY using Long

-710

=720

-730

'
N
N
S

Total Energy (kcal/mol)

-810 i L L L L L L Il Il Il

5
Time (fs)

Fig. 7. Results for 100 ps of simulation for water at about 300 K using Impulse-
Verlet and BSpline mollified integrators using SHORTAVERAGE and LONGAVERAGE
as averaging B-Splines, all using (At, §t) = (5.0,1.0). The fluctuation of the total
energy is averaged out by showing only the average value of every 10 data points
(spanning approximately 50 fs). The block-averaged total energy is then shifted
to let them distinguish from each other. The integration is seen to be for both
Verlet-I/r-RESPA and SHORTAVERAGE MOLLY are unstable at At = 5fs, but
LONGAVERAGE MOLLY is stable at 5 fs.

Method \ At (fs)]| 3 4 5 6
Impulse 0.797 £ 0.006|1.626 £ 0.008 —— ——
BMI-S —— 0.974 £ 0.008|21.684 = 0.014|17.263 = 0.024
BMI-L —0.065 £ 0.006|0.711 £ 0.006| 1.500 £ 0.010| 8.139 £ 0.020

Table 1. Percent Relative Drift of total energy using B-spline Mollified Impulse
integrators on the flexible TIP3P water model at 300K for 200 ps, where all methods
use timestep 6t = 1.0fs for leapfrog integrator, and where BMI-S stands for B-
spline Mollified Impulse method using SHORTAVERAGE, and BMI-L stands for B-
spline Mollified Impulse method using LONGAVERAGE. The Percent Relative Drift,
D, is computed using D = (m 4 2.00,,)t /K * 100 where m is the coefficient of
the linear regression on the energy, and o, the standard deviation of m, t the
simulation time, and K the average kinetic energy, respectively.

Table 1 shows the drift for a fixed simulation time of 200 ps relative to
the average kinetic energy of the system. It is interesting that one observes a
drift around 3 fs for Verlet-I/r-RESPA but not for the MOLLY methods. This
drift corresponds to the 3:1 nonlinear instability that we postulate exists in
Verlet-1/r-RESPA. This means that the impulse method is not much better
than leapfrog if one wants a simulation with no drift.

In other papers we show how another MOLLY method achieves a com-
puting time speedup of 38% over Verlet-I/r-RESPA using a longest time step
that is 50% longer than the longest possible for Verlet-I/r-RESPA [31,27].
This method is implemented in NAMD 2 [34]. Using mild Langevin damp-
ing, speedups of 350% over Verlet-I/r-RESPA are possible, while preserving
the dynamical properties [29].

6 Conclusions

We have shown how one can design mollified versions of Verlet-I/r-RESPA to
overcome instabilities present in the method. MOLLY is a practical method
that produces real speedups. In this paper we have shown simple analysis
of the method to show how to overcome the linear instability at half the
fastest period. The predictions of our analysis are confirmed by numerical
experiments. We also pinpoint the fact that one needs to take care of nonlinear
instabilities in Verlet-I/r-RESPA to take full advantage of the promise of MTS
integrators. These instabilities have not been reported before for Verlet-1/r-
RESPA, although they have been known to exist in Verlet or leapfrog.

We have also given extensive details on how to implement these and
other MTS integrators, describing our particular implementation in the pro-
gram PrROTOMOL. We have provided the derivation of the Hessians of the
CHARMM field for those interested in implementing the MOLLY methods,
or who may be interested in using them for normal mode analysis.

Acknowledgments

We acknowledge the inspiration provided by Dr. Robert Skeel’s work on MTS
integrators in many aspects of this work. We are grateful to Dr. Atul Bahel
for his implementation of some integrators into PROTOMOL. The following
students have collaborated in the implementation of PRoTOMOL: Trevor Ci-
ckovski, Thomas Steinbach, Scott Stender, Jeffrey Stine, and Joseph Taylor.
This research was partially supported under NSF biocomplexity grant MPS-
0083653. Thomas Slabach was suppported by a fellowship from the Center
for Applied Mathematics at the University of Notre Dame. Thierry Matthey
tested MOLLY in PROTOMOL in the Norwegian super-computing facilities
in Bergen through a Norges Forskningsrad grant.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

E. Barth and T. Schlick. Extrapolation versus impulse in multiple-timestepping
schemes. II. Linear analysis and applications to Newtonian and Langevin dy-
namics. J. Chem. Phys., 109(5):1633-1642, Aug 1998.

E. Barth and T. Schlick. Overcoming stability limitations in biomolecular dy-
namics. I. Combining force splitting via extrapolation with Langevin dynamics
in LN. J. Chem. Phys., 109(5):1617-1632, August 1998.

. J. J. Barton and L. R. Nackman. Scientific and Engineering C++: an introduc-

tion with advanced techniques and eramples. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

P. F. Batcho and T. Schlick. Special stability advantages of position Verlet
over velocity Verlet in multiple-timestep integration. J. Chem. Phys., 2001.
D. M. Beazley and P. S. Lomdahl. Message-passing multi-cell molecular dy-
namics on the connection machine 5. Parallel Computing, 20:173-195, 1994.
D. M. Beazley and P. S. Lomdahl. Lightweight computational steering of very
large scale molecular dynamics simulations. In Proceedings of Supercomput-
ing 96, 1996.

H. J. C. Berendsen. Molecular dynamics simulations: The limits and beyond.
In P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D.
Skeel, editors, Computational Molecular Dynamics: Challenges, Methods, Ideas,
volume 4 of Lecture Notes in Computational Science and Engineering, pages
3-36. Springer-Verlag, Nov. 1998.

J. J. Biesiadecki and R. D. Skeel. Dangers of multiple-time-step methods. J.
Comput. Phys., 109(2):318-328, Dec. 1993.

T. Bishop, R. D. Skeel, and K. Schulten. Difficulties with multiple timestepping
and the fast multipole algorithm in molecular dynamics. J. Comput. Chem.,
18(14):1785-1791, Nov. 15, 1997.

B. R. Brooks and M. Hodoscek. Parallelization of CHARMm for MIMD ma-
chines. CDA, 7:16-22, Dec. 1992.

D. Brown, H. Minoux, and B. Maigret. A domain decomposition parallel pro-
cessing algorithm for molecular dynamics simulations of systems of arbitrary
connectivity. Computer Physics Communications, 103:170-186, 1997.

A. T. Briinger. X-PLOR, Version 3.1: A System for X-ray Crystallography and
NMR. Yale University Press, New Haven and London, 1992.

T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott. Parallelizing
molecular dynamics using spatial decomposition. In Proceedings of the Scalable
High-Performance Computing Conference, pages 95-102, Los Alamitos, Calif.,
1994. IEEE Computer Society Press.

T. Darden, D. York, and L. Pedersen. Particle mesh Ewald. An N-log(N)
method for Ewald sums in large systems. J. Chem. Phys., 98:10089-10092,
1993.

D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms
to Applications. Academic Press, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts,
1995.

B. Garcia-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-step methods
for oscillatory differential equations. SIAM J. Sci. Comput., 20(3):930-963,
Oct. 20, 1998.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

B. Garcia-Archilla, J. M. Sanz-Serna, and R. D. Skeel. The mollified impulse
method for oscillatory differential equations. In D. F. Griffiths and G. A. Wat-
son, editors, Numerical Analysis 1997, pages 111-123, London, 1998. Pitman.
A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic
differentiation of algorithms written in C/C++4. ACM Trans. Math. Softw.,
22(2):131-167, 1996.

H. Grubmiiller. Dynamiksimulation sehr grofler Makromolekiile auf einem
Parallelrechner. Master’s thesis, Physik-Dept. der Tech. Univ. Miinchen, Mu-
nich, 1989.

H. Grubmiiller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet
algorithm for efficient molecular dynamics simulations with long-range interac-
tions. Molecular Simulation, 6:121-142, 1991.

J. M. Haile. Molecular Dynamics Sitmulation. John Wiley and Sons, 1992.

S. Haney and J. Crotinger. How templates enable high-performance scientific
computing in C++. Computing In Science & Engineering, 1(4):66-72, Jul-Aug
1999. POOMA reference.

G. A. Huber and J. A. McCammon. OOMPAA-—Object-oriented model for
probing assemblages of atoms. J. Comput. Phys, 151(1):264-282, May 1, 1999.
D. D. Humphreys, R. A. Friesner, and B. J. Berne. A multiple-time-step molec-
ular dynamics algorithm for macromolecules. J. Phys. Chem., 98(27):6885—
6892, July 7, 1994.

Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoséek, and B. R. Brooks. Paral-
lelizing molecular dynamics programs for distributed-memory machines. /[EEFE
Computational Science & Engineering, 2(2):18-29, Summer 1995.

J. A. lIzaguirre. Longer Time Steps for Molecular Dynamics. PhD
thesis, University of Illinois at Urbana-Champaign, 1999. Also
UIUC Technical Report UIUCDCS-R-99-2107. Available online via
http://www.cs.uiuc.edu/research/tech-reports.html.

J. A. Izaguirre. Generalized mollified multiple time stepping methods for molec-
ular dynamics. In A. Brandt, J. Bernholc, and K. Binder, editors, Multiscale
Computational Methods in Chemistry and Physics, volume 177 of NATO Sci-
ence Series: Series I11 Computer and Systems Sciences, pages 34—47. 10S Press,
Amsterdam, Netherlands, Jan 2001.

J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, and R. D. Skeel. Langevin
stabilization of molecular dynamics. J. Chem. Phys., 114(5):2090-2098, Feb. 1,
2001.

J. A. Izaguirre, T. Matthey, J. Willcock, Q. Ma, B. Moore, T. Slabach,
and G. Viamontes. A tutorial on the prototyping of multiple
time stepping integrators for molecular dynamics. Available from
http://www.cse.nd.edu/"1cls/Protomol.html, 2001.

J. A. Izaguirre, S. Reich, and R. D. Skeel. Longer time steps for molecular
dynamics. J. Chem. Phys., 110(19):9853-9864, May 15, 1999.

J. A. Izaguirre, J. Willcock, T. Matthey, T. B. Slabach, T. Stein-
bach, S. Stender, G. F. Viamontes, and J. Mohnke. ProtoMol: An ob-
ject oriented framework for molecular dynamics. Available online via
http://wuw.cse.nd.edu/"1lcls/Protomol.html, 2000.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein. Comparison of simple potential functions for simulating liquid water. J.
Chem. Phys., 79:926-935, 1983.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. NAMD2: Greater
scalability for parallel molecular dynamics. J. Comp. Phys., 151:283-312, 1999.
M. Karplus. Molecular dynamics: Applications to proteins. In J.-L. Rivail, ed-
itor, Modelling of Molecular Structures and Properties, volume 71 of Studies in
Physical and Theoretical Chemistry, pages 427-461, Amsterdam, 1990. Elsevier
Science Publishers. Proceedings of an International Meeting.

A. R. Leach. Molecular Modelling, Principles and Applications. Addison Wesley
Longman Limited, Essex, 1996.

M. Lépez-Marcos, J. M. Sanz-Serna, and R. D. Skeel. Explicit symplectic
integrators using Hessian—vector products. SIAM J. Sci. Comput., 18:223-238,
Jan. 1997.

Q. Ma, R. D. Skeel, and J. A. Izaguirre. Verlet-I/r-RESPA is nonlinearly
unstable! In preparation, 2001.

A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. Evanseck,
M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kucz-
era, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prod-
hom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub,
M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-hydrogen
empirical potential for molecular modeling and dynamics studies of proteins
using the CHARMMZ22 force field. J. Phys. Chem. B, 102:3586-3616, 1998.
T. Matthey and J. P. Hansen. Evaluation of MPI’s one-sided communica-
tion mechanism for short-range molecular dynamics on the Origin2000. In
PARA2000 and Workshop on Applied Parallel Computing, 2000.

T. Matthey and J. A. Izaguirre. ProtoMol: A molecular dynamics framework
with incremental parallelization. In Proc. of the Tenth SIAM Conf. on Parallel
Processing for Scientific Computing (PP01), Proceedings in Applied Mathe-
matics, Philadelphia, March 2001. Society for Industrial and Applied Mathe-
matics.

M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kalé, R. D. Skeel, and
K. Schulten. NAMD — A parallel, object-oriented molecular dynamics program.
Int. J. Supercomput. Appl. High Perform. Comput., 10:251-268, 1996.

S. Reich. Dynamical systems, numerical integration, and exponentially small
estimates, 1998. Habilitation Thesis.

A. Sandu and T. Schlick. Masking resonance artifacts in force-splitting methods
for biomolecular simulations by extrapolative Langevin dynamics. J. Comput.
Phys, 151(1):74-113, May 1, 1999.

J. Sanz-Serna and M. Calvo. Numerical Hamiltonian Problems. Chapman and
Hall, London, 1994.

T. Schlick. Some failures and successes of long-timestep approaches to biomolec-
ular simulations. In P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Re-
ich, and R. D. Skeel, editors, Algorithms for Macromolecular Modelling, vol-
ume 4 of Lecture Notes in Computational Science and Engineering, pages 221—
250. Springer-Verlag, 1998.

T. Schlick, M. Mandziuk, R. D. Skeel, and K. Srinivas. Nonlinear resonance
artifacts in molecular dynamics simulations. J. Comput. Phys., 139:1-29, 1998.
SGIL. The Standard Template Library: Introduction.
http://www.sgi.com/Technology/STL/stl_introduction.html.

49. J. G. Siek and A. Lumsdaine. The Matrix Template Library: A uni-
fying framework for numerical linear algebra. In International Sympo-
sium on Computing in Object-Oriented Parallel, 1998. Also available from
http://www.lsc.nd.edu/downloads/research/mtl/papers/mtl_poosc.pdf.

50. R. D. Skeel. Macromolecular dynamics on a shared-memory multiprocessor. J.
Comp. Chem., 12(2):175-179, January 1991.

51. R. D. Skeel. Integration schemes for molecular dynamics and related applica-
tions. In M. Ainsworth, J. Levesley, and M. Marletta, editors, The Graduate
Student’s Guide to Numerical Analysis, SSCM, pages 119-176. Springer-Verlag,
Berlin, 1999.

52. R. D. Skeel and J. J. Biesiadecki. Symplectic integration with variable stepsize.
Annals of Numer. Math., 1:191-198, 1994.

53. R. D. Skeel and J. Izaguirre. The five femtosecond time step barrier. In P. Deu-
flhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, edi-
tors, Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4
of Lecture Notes in Computational Science and Engineering, pages 303-318.
Springer-Verlag, Berlin Heidelberg New York, Nov. 1998.

54. R. D. Skeel, G. Zhang, and T. Schlick. A family of symplectic integrators: sta-
bility, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput.,
18(1):203-222, Jan. 1997.

55. B. Stroustrup. The C++ Programming Language. Addison-Wesley, third edi-
tion, 1997.

56. M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale
molecular dynamics. J. Chem. Phys, 97(3):1990-2001, 1992.

57. M. E. Tuckerman, D. Yarne, S. O. Samuelson, A. L. Hughes, and G. J. Martyna.
Exploiting multiple levels of parallelism in Molecular Dynamics based calcu-
lations via modern techniques and software paradigms on distributed memory
computers. CPC, 128:333-376, 2000.

58. T. Veldhuizen. Blitz++: The library that thinks it is a com-
piler. Conference presentation, Extreme! Computing Labora-
tory, Indiana University Computer Science Department, Sep. 1998.
http://oonumerics.org/blitz/blitztalk.ps.gz.

59. T. Veldhuizen. Techniques for scientific c++. Technical Re-
port 542, Indiana University Computer Science Department, 2000.
http://extreme.indiana.edu/ tveldhui/papers/techniques/.

60. J. Vincent and K. M. Merz. A highly portable parallel implementation of Amber
using the message passing interface standard. J. Comp. Chem., 11:1420-1427,
1995.

Appendix Derivation of the Hessians for MOLLY

Here we derive the Hessians for most forces used in the CHARMm force
field [39]. These have been validated using automatic differentiation tools [19]
and symbolic differentiation tools such as Mathematica.

Hessian of Bond Energy

Bonds [42] describe a linear bond between two atoms. These bonds are de-
scribed by a simple harmonic springs. The energy of a bond between atoms

¢ and j is given by:
Ebond =k (|7'ij| - TO)Z) (27)

where k is the spring constant, r;; = r; — r;, and rg is the rest distance of
the bond. Its derivatives are:

EEOnd = Qk(\rij\ — TO)[_T;j,TgﬂT7 (28)
Irigl=ro [T =17 | 2kwo [wiyui;,” —rir” 29)
|rij| -1 T |'r.ij| ~ T .

~ AT A
—UijUii" TijTij

Epd =2k

6.1 Hessian of the Angle Energy

Angle interactions describe angular bonds between three atoms. These bonds
are modeled as harmonic angular springs. The energy of such a bond between
atoms 7, j, and k is given by:

Eangle = EG + Eub7 (3())
Eo = ko (6 — 60)°, (31)
Eub - kub (|7'ik| - Tub)2) (32)

"M) , Bg is the rest angle of
75117 k5
this bond, k,p, is Urey-Bradley constant, r;x = 7, — 4, |rik| is the calculated
distance between atoms i and k and 7y, is rest distance for the Urey-Bradley
term.

The Hessian of the Urey-Bradley energy of Equation (30) can be obtained

easily:

where kg is the force constant, # = cos™! (

I 0-1 2k il — 1 0 =i + 1
ub ub Tub
E™ =2k, | 000 T 0 0 0 . (33)
10 I Tik e T 10 et =1

For Ey, let C(o, 8,7) = ;‘jg_/% where «, [and v are scalars, and o =
2 2 2

71", B = |rk;|”, and v = |rgl

Now the angle energy can be expressed as

Ey(C(a, B,7)) = ko(cos™ (C(a, B,7)) — bo)*. (34)
The second derivative of the Fy part is then:
£

0
EM =FEcCr +

(35)

2kglsinf — (60 — 0 0
o[sin .(3) cos]>C’rC’,.T,
sin” 0

b
Err

where Ec = —W, Cr = fa, + g0 + hv- in which f = 4%_3532%,

0= h= A 0, = (-2,2,007Va iy, B, = (0,2,-2)7 VB iy,
and v, = (2,0,-2)"/¥ 4. The C,, is computed as follows:

.
Crr = (f Cvr + g Brr + hyer) + (o f1 + Br gl + 7 b)), (36)
cb,
where
21 —2I0 0 0 0 21 021
app = |21 21 0|, By=|021 2|, ~v»=| 00 0 |,
0 00 0—-21 2I —210 21
(37)
and
fr:faar+fﬁﬁr+f'y’7ra g'r’:gaar‘i'gﬁﬁr“‘g'y%w
hy = ha o + hﬁ Br + h’y Vrs (38>
where
_ —a+38-3y —a—f—7 B 1
fa—W» fﬂ—W7 fv—ma (39)
3a— [— 3y 1
a=fo o= g =, 10
g fﬁ ap 8\/&55/2 G 4\/&53/2 ()
ha =fy, hg=gy, hy=0. (41)
In Equation (36), the first part, C%., becomes
2f+h)I —2f —2hI
coo= | —2f 2f+gl 29I |, (42)
—2hl —2gI 2(g+h)I

whereas the second part, C?_, becomes

T

Cfr = fa aTa? + /s O‘Tﬁ? + fy Q’TVTT + Ga ﬁraf +9s ﬁrﬁz+
G~ ﬁr’)’? + hoz ’Yra;zj + hﬁ %"ﬂ? + h’y ferYrjja (43)

where

r ~ AT ~ ~T
4Tijrij _4rijrij 0

apal = | —dryry" dryrT 0| @ (44)
L0 0 0
00 0

B.8T = |0 4arjri” —4ririt | B (45)

_0 —4’/‘3k’l"5‘k-T 47";k’l";‘kT
[drprie” 0 —4ripri”
Yy = 0o 0 0 v (46)
| AT 0 dririe” |

0 0 0
Bral = | —ariri; T 4rigr T 0| Va/B (47)

~ AT ~ AT
L 4’/"]€j’ﬁ'j —47“kjrij O_

[—driirs;, " 4riari;” 0
Yoy = 0 0 0| Vayy (48)
| driri;T —4riar T 0

[0 4rirk;T —4riiriy -

3T =10 0 0 VENG (49)
_0 —4T;€i7"]chT 4T;€1'T]A€j
Bl = (Brag)t, ey = (war)t, By = (w6 (50)

The second part of Equation (35) becomes

2kglsin@ — (60 — 0p) cos

- (L= el
g fBral +hfyal+

g faBr + ¢ 867 + hgv BT+

hfayt +gh Byl + k% yAl). (51)

Hessian of van der Waals Energy

The van der Waals interactions describe the forces resulting from local in-
teractions of atoms. The van der Walls energy between two atoms 4 and j is
described by

A B
Eviw = —3 — —5 (52)
[7i;] 7451
where A and B are constants specified for a pair of atom types explicitly in
the parameter file, r;; = r; — 7;, the vector from atom ¢ to atom j, |r;;| is

the length of vector r;;.

The first derivative of the van der Waals energy is as follows.

b, = (63 12A> [—rij, riz]T. (53)

8 14
Irii|” rigl

The Hessian of van der Waals energy is as follows.

I -1 'rA»»'rA»»T _r,«f‘r”,,T
Err = Cl |: :| +C2 |: Z{ Z{ T Az] AZ%" :|) (54)
—I I _Tij Tij Tij T’L'j
where Oy = 8B — 124,14 0, = =488 | 1684

| ij|8

ri[* Tl i

Hessian of Electrostatic Energy

Electrostatics describes the force resulting from the interaction between two
charged particles. The electrostatic energy between two atoms ¢ and j is
described by the Coulomb’s Law as:

€14 Cq; q;

55
€0 |74 (55)

Eelect =
where €14 is scaling factor for 1 — 4 interactions, C' = 2.31 x 107%J nm, ¢;, ¢
are charges for atom ¢ and j, ¢ is dielectric constant, r;; and |r;;| are same

as defined before.
The first derivative of the electrostatic energy is as follows.

E, = _6140%‘%‘ [

5 [~ Tij, il (56)
€0 |7ijl

The Hessian of electrostatic energy is as follows.

s Caqiqy [I —3riri; 7 —I+3r;15,7
Bpp=———3" T+35 T T3 T | (57)
€0 |’I°1'j| —1 4 375 T — O Tij

Hessian of Switching Functions

A switching function is often applied to a nonbonded energy computation
to suppress the destablizing factor introduced by the cutoff approximations.
There are two popular switching functions, SWC1 [52] and SWC2 [25]:

SWCI(ri) =41~ (3lrijlra® = 5lrglP)r =2 iflrig| <, (58)
? 0 ifjri;| > 71,

where r; is the distance where the function value becomes zero. The first and
second derivatives of this switching function is given as follows. Let Y be the

SWC1 function, then

3 A~ AT 3"“1‘3“2 A AT
Yr=—2—m(—7“ij,7“ij) + 23 (=735 735)" (59)
3 e | [1 I
Yrr: -]
(2r1|r i - 2r})[—I I}
3 L IN R 60
(B 3) A Ao T ()
271|744 27 =TT T T

The other switching function, SW(C2, is more expensive to evaluate, and
is given by:
1 1f|7‘2]| S To,
(Irigl? = m*)?(r1® + 2|rig|* — 3r0°)
(T12 _ 7,02)3
0 lf|’l"U| >ry,

SWCQ(’T‘ij) = ifTo < |’I"ij| <r,

(61)
where 1 is the distance where the function value becomes zero, and rq that

where it becomes active. Let Y be the SW(C2 function which is active, the
first derivative is given by

12(r;1* = r12)(Jri; | — ro?)

R (62)
The Hessian matrix is given by two parts:
Yo = Y5+ Y (63)
where
ya = 120ri* =) (ri* = o®) { ' _I} (64)
" (7"12 — r02)3 I 1|

o _ 2Py = o =) [iy rzﬂ |
" (r? —7r0%)° —Ti T T T
Hessian of Nonbonded Energy With Switching Functions

When the effective energy (F.) is taken as the raw energy (F) multiplied by
a switching function (Y), i.e.,

E.=FEY,

the Hessian matrix of the effective energy is given as the following using chain
rule:

orz Or2 or \ or or? E. (66)

These are nearly all the formulas needed to implement BSpline MOLLY
methods that compute Hessians. Dihedral and improper Hessians may be
derived in a way analogous to the angle Hessian.

0?°E. O°E oy <8E>T %Y

